The Landis conjecture for variable coefficient second-order elliptic PDEs
نویسندگان
چکیده
منابع مشابه
Elliptic and Parabolic Second-order Pdes with Growing Coefficients
We consider a second-order parabolic equation in R with possibly unbounded lower order coefficients. All coefficients are assumed to be only measurable in the time variable and locally Hölder continuous in the space variables. We show that global Schauder estimates hold even in this case. The proof introduces a new localization procedure. Our results show that the constant appearing in the clas...
متن کاملA direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method
A numerical method for variable coefficient elliptic problems on twodimensional domains is presented. The method is based on high-order spectral approximations and is designed for problems with smooth solutions. The resulting system of linear equations is solved using a direct solver with O(N1.5) complexity for the precomputation and O(N logN) complexity for the solve. The fact that the solver ...
متن کاملConvergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs
We prove convergence of adaptive finite element methods (AFEM) for general (nonsymmetric) second order linear elliptic PDE, thereby extending the result of Morin et al [6, 7]. The proof relies on quasi-orthogonality, which accounts for the bilinear form not being a scalar product, together with novel error and oscillation reduction estimates, which now do not decouple. We show that AFEM is a co...
متن کاملDiscontinuous Galerkin Methods for Friedrichs' Systems. Part II. Second-order Elliptic PDEs
This paper is the second part of a work attempting to give a unified analysis of Discontinuous Galerkin methods. The setting under scrutiny is that of Friedrichs’ systems endowed with a particular 2×2 structure in which some of the unknowns can be eliminated to yield a system of second-order elliptic-like PDE’s for the remaining unknowns. For such systems, a general Discontinuous Galerkin metho...
متن کاملA Posteriori Error Estimates of Residual Type for Second Order Quasi-Linear Elliptic PDEs
where Ω is assumed to be a polygonal bounded domain in R2, f ∈ L2(Ω), and α is a bounded function which satisfies the strictly monotone assumption. We estimated the actual error in the H1-norm by an indicator η which is composed of L2norms of the element residual and the jump residual. The main result is divided into two parts; the upper bound and the lower bound for the error. Both of them are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7073